Earlier this year I wrote about some of the risks facing humanity. I’ve begun to expound on those risks with additional information. Here is the first risk in the list, Celestial Billiards.
One risk we face that is certainly out of our control involves our environment. Not the environment on Earth, but the environment in the universe. There are many, many forces out there in the universe, and they care not in the least that they may affect life forms on our planet should they interact with it. There are many objects flying around in our solar system that can (and eventually will) intersect with our planet. If they are large enough, they can wreak havoc upon a city, or a nation, or upon the entire earth. Modeling of the impact of the Yucatan body that brought the end to the dinosaurs shows that the entire atmosphere of the earth was aflame from the impact and subsequent reentry of the material thrown out across the globe. Only the creatures burrowed into the ground, or shielded by water had much of a chance of surviving the immediate impact. Today, we use many telescopes to identify and track objects found in our solar system. Still, it seems that every few months we learn of an object that could cause significant harm to the earth passing between us and the moon. One valuable use of a proposed Space Force would be to combine this detection team with a proactive defense capability, one that would be able to divert an oncoming object away from impact with earth.
The odds of an ecosystem destroying impact is very low. But our solar system has another kind of risk to throw at us, and this risk is probably orders of magnitude more likely than an asteroid’s impact. That is, we could have a solar flare that would wreak havoc upon our electric grid, causing large portions of the world to instantly regress back to stone-age conditions. Our sun is huge, and we still don’t understand the physics of how large-scale eruptions can throw off millions of tons of charged particles from the sun’s surface into space. If the eruption is large enough, and if it is aimed at Earth, it will hit us. We would have a mere two to three days warning. Would we be able to power down our electrical grid before it hit, causing catastrophic damage to our wiring and transformer base? Is there a way to shield these huge transformers so that they would survive? For it is a known fact from physics that if wires are present when electrically charged particles flow past, voltage will be induced in the wires. And transformers are nothing but masses of wire windings, aimed at either stepping up or stepping down voltages. The last major solar storm that reached the Earth happened in 1859. At that time, only telegraph wires were strung across the countryside to give us an idea of what will happen with a much more wired world. In the 1859 flare, telegraph operators reported receiving electrical shocks from the induced voltages. Telegraph wires sparked and caused fires. And all of this happened with single wires carrying low-voltage electricity.
Were we to have such an event today, the damage would be catastrophic. Overloaded wires will cause transformers to blow. Not just the local ones on the poles that step voltage down to household level, but the huge ones that work with the high voltages used to transfer electricity across the country. These transformers are huge, there are insufficient spares available to restore service should it be required across a large swath of any country, and the available manpower to fix the grid is lacking. Look how long it took to restore service to Puerto Rico after a massive failure of their grid. It would be much worse with a massive solar flare. Thus here is another area where we need to invest manpower in preventive activity, and much of that manpower must be well-versed in electrical engineering and physics. More than just manpower though, we must also invest in spare parts, and stage these transformers in locations where they can be moved to where they are needed. Given the economic model for utilities where state regulators must approve any rate increases due to the investment of a utility, it will take a real awakening of the world to this risk factor to convince those in power to grant rate increases for a danger that may come tomorrow, but may not show for 100 years. Those who pay electrical bills will not understand prudent risk avoidance when it raises their electrical bills unless there is a huge effort made to teach the public about this risk.
Jeff,
The hurricanes that have wreaked havoc on Florida, Georgia and the Carolinas recently I guarantee have hurt construction schedules across the country as transformers originally scheduled for new projects are re-routed (and rightly so) to the south. We in the industry have seen it over and over, and come to expect it to some degree. These are tiny ripples compared to a massive ripples that would result from your scenario, loss of power, including at the facilities that manufacture the transformers would mean further delays. Makes me want to invest more in solar at my next house that can be removed from the grid and powered down easily for the duration of the storm.
Definitely something to consider.
LikeLike
You’re right. And the transformers you are seeing are medium scale transformers. The large transformers that handle major high voltage lines not only are expensive, but huge, making for large transportation logistic problems. But I keep seeing people complain about each and every charge a utility wants to make when they upgrade a system because it costs citizens money and somewhere, somehow, someone’s making a buck out of it at my expense!
LikeLike